

This protocol has 3 pages

MEDIUM CHAIN ACYL COA DEHYDROGENASE DEFICIENCY (MCADD)

- ACUTE ILLNESS / DECOMPENSATION

IMMEDIATE ACTION

- Triage to high priority
- Hypoglycaemia occurs late do not delay treatment because blood glucose is not low
- Management should be based upon clinical status as per Section 2.
- Run IV 10% Dextrose/0.45% Sodium Chloride at 5ml/kg/hr ONLY until fluids can be accurately calculated
- These guidelines cover the first 24hr of management only ongoing management should be guided by the child's specialist metabolic team. Inform them EARLY about the child

1. Background and Signs of Decompensation

- MCAD deficiency is the most common disorder of fat catabolism. The clinical
 manifestations occur due to energy deficit during fasting, mainly during acute illnesses
 with reduced intake.
- Infections, fasting, diarrhoea or vomiting can lead to serious illness, with encephalopathy and even sudden death.
- This results from the accumulation of toxic fatty acids.
- Hypoglycaemia only occurs at a late stage. The aim should always be to intervene whilst the blood glucose is normal.
- The early signs of decompensation may be subtle e.g. lethargy or 'floppiness'
- Treatment aims to prevent catabolism by providing energy in the form of glucose enterally or intravenously (see section 2)

2.Management in hospital

- o If the child is shocked or clearly very ill consider admission to ITU/High dependency.
- If admitted to a metabolic/general ward careful clinical assessment is essential including regular PEWS and neurological observations even if the patient does not appear encephalopathic.

The following blood tests should be considered: pH and gases

Glucose (laboratory and bedside strip test)

Urea and electrolytes
Full blood count

Consider other tests as clinically indicated.

Management decisions should be based primarily on the **clinical** status. The first decision about therapy is whether the child can be treated orally or will need intravenous therapy. Intravenous fluids are indicated if:

- 1. the child is unable to tolerate oral fluids, or
- 2. there is moderate or severe clinical dehydration
- If there is any doubt at all, put up an intravenous line.
- Treat any infection
 - **A. ORAL.** If the child is relatively well and not vomiting, oral feeds may be given. For young children (typically under 2 years) or those who already have enteral feeding tubes, the emergency feed can be given via such tubes.

FULL ENTERAL EMERGENCY FEED – glucose polymer solution

Use patient's own ER recipe wherever possible. Use age-based ER recipes below if not available. If ER products not available use IV guidelines.

NB: MCT feeds and supplements contraindicated in MCADD Oral rehydration solutions are low in CHO and not suitable

- Click Here for Emergency Regimen for Age ≤ 1 year (10%)
- Click Here for Emergency Regimen for Age 1- 2 years (15%)
- Click Here for Emergency Regimen for Age 2-9 years (20%)
- Click Here for Emergency Regimen for Age ≥ 10 years (25%)

EMERGENCY FEED ADMINISTRATION

- Give feeding volume for body weight (see recipe)
- Feed orally: 2 hourly day and night
- If not tolerated or fluid requirements not met, administer continuously by tube, without delay
- Administer bolus or continuously by tube feed, without delay for a maximum of 24-36hours
- Introduce usual diet/feeds as soon as clinically stable

Medications

• Antipyretics: as clinically indicated

Contact the child's specialist metabolic team and dietitian for further advice on the ER and introduction of usual diet/feeds

B. INTRAVENOUS. If the child is unwell and/or vomiting then IV treatment is needed:

IMMEDIATE FLUID RESUSCITATION:

- Give Glucose 200 mg/kg at once if there is definite hypoglycaemia (2ml/kg of 10% glucose or 1ml/kg of 20% glucose over a few minutes if blood glucose <3.0mM)
- Give 0.9% sodium chloride 20 ml/kg as a bolus **if the peripheral circulation is poor or the patient is frankly shocked**. Repeat the sodium chloride bolus if the poor circulation persists as for a shocked non-metabolic patient.

INITIAL FLUIDS AFTER RESUSCITATION:

• Run IV fluids of Glucose 10%/Sodium Chloride 0.45% at 5ml/kg/h ONLY until accurate fluid rates have been calculated – **do not leave on this high rate longer than necessary**. (for instructions to make this solution click here).

FURTHER FLUID MANAGEMENT IN FIRST 24 HOURS:

- Ongoing fluid management in based upon administering the fluid deficit plus maintenance over 24 hours as Glucose 10%/Sodium Chloride 0.45%.
- Deduct any fluid already given from the total for the first 24 hours.
- Potassium can be added once the plasma potassium concentration is known and the child is passing urine.
- Reassess hydration status and the need for ongoing IV fluids after 24 hours and if needed recheck the electrolytes every 24 hours.
- **3. Progress/Monitoring:** Reassess after 4-6 hours or earlier if there is any deterioration or no improvement. <u>Clinical assessment</u> should include PEWS and neurological observations.
 - If deteriorating, seek specialist help without delay.

4. Re-introduction of oral feeds:

- Intravenous fluids should not be stopped abruptly.
- Consider halving IV fluids for a few hours before stopping.
- IV fluids can be stopped once it becomes clear that oral feeds are being tolerated.
- For more information please refer to the MCADD dietary guidelines or consult your metabolic dietitian.
- Only allow the child home if you and the family are entirely happy. It must be clearly demonstrated that the child can tolerate at least two successive feeds / meals before discharge. The family must have a clear management plan and be prepared to return if the child deteriorates.

For further information please refer to:

Merritt JL 2nd, Chang IJ. Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency. 2000 Apr 20 [Updated 2019 Jun 27]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1424/